

Anomalous Hall Effect in (111)-oriented Sn_{1-x}Mn_xTe Epilayers

A. Kazakov¹, V.V. Volobuev¹, M. Zięba², B. Turowski¹, W. Zaleszczyk^{1,2}, T. Wojciechowski^{1,2}, K. Gas², M. Sawicki², T. Story^{1,2}, T. Wojtowicz¹

¹ International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland

² Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland

Introduction / Motivation

Topological crystalline insulators:

- Sn/Mn → Topological surface states (TSS) are protected by the (110) mirror plane symmetry
- → SnTe is an archetypical topological crystalline insulator

Material: Ternary Sn_{1-x}Mn_xTe:

→ Transition metal Mn-doped SnTe is a ferromagnet

→ Magnetically-doped TCI are host to the large-Chern-number quantum

Growth and samples details

MBE growth

- \succ Veeco GENxplor, SnTe, Mn, Te sources, (111)-BaF₂ substrates, T_S=350 °C, P₀ = 10⁻¹⁰ mBar
- > $Sn_{1-x}Mn_xTe$ films, $x_{Mn} = 0 \div 0.1$, 1 µm nominal thickness
- > RHEED *in-situ*, shows streaky pattern, smooth surface, 2D growth mode
- > AFM confirms excellent surface quality, monolayer thick steps are resolved; same RMS for Mn doped and undoped samples proves no inclusions of Mn reach phase up to $x_{Mn} = 8 \%$
- \succ XRD maxima from single crystalline (111) oriented film, systematic reduction of lattice constant with Mn doping,
- to $x_{Mn} = 8$ %, small

asymmetric RSM

RHEED, along [110]

Electrical Transport

Main results

- Systematic study of magnetotransport properties in MBE-grown (111)-oriented $Sn_{1-x}Mn_x$ Te epilayers was performed
- Mangetotransport data agrees well with magnetization measurements

>AHE coefficients are extracted

Acknowledgements

The research was supported by the Foundation for Polish Science through the IRA Programme co-financed by EU within SG OP

Republic of Poland

European Union European Regional Development Fund